STED microscope with Spiral Phase Contrast

نویسندگان

  • Marcel A. Lauterbach
  • Marc Guillon
  • Asma Soltani
  • Valentina Emiliani
چکیده

Stimulated Emission Depletion (STED) microscopy enables superresolution imaging of fluorescently marked nano-structures in vivo. Biological investigations are often hindered by the difficulty of relating super-resolved structures to other non-labeled features. Here we demonstrate that the similarity in optical design of Spiral Phase Contrast (SPC) and STED microscopes allows straightforward implementation of a phase contrast channel into a STED microscope in widefield and scanning modes. This method allows dual imaging and overlay in two contrast modes in fixed and in living specimens, in which double labeling is especially challenging. Living GFP- and YPF-stained neurons are imaged in one label-free phase contrast and one high-resolution STED channel. Furthermore, we implement SPC in widefield and scanning modes demonstrating that scanning confocal SPC yields the highest optical contrast. The latter configuration can provide contour detection or highlights and shadows reminiscent of differential interference contrast.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Birefringent device converts a standard scanning microscope into a STED microscope that also maps molecular orientation.

Stimulated emission depletion (STED) microscopy usually employs a scanning excitation beam that is superimposed by a donut-shaped STED beam for keeping the fluorophores at the periphery of the excitation spot dark. Here, we introduce a simple birefringent device that produces a donut-shaped focal spot with suitable polarization for STED, while leaving the excitation spot virtually intact. The d...

متن کامل

Upgrade of a Scanning Confocal Microscope to a Single-Beam Path STED Microscope

By overcoming the diffraction limit in light microscopy, super-resolution techniques, such as stimulated emission depletion (STED) microscopy, are experiencing an increasing impact on life sciences. High costs and technically demanding setups, however, may still hinder a wider distribution of this innovation in biomedical research laboratories. As far-field microscopy is the most widely employe...

متن کامل

STED microscopy detects and quantifies liquid phase separation in lipid membranes using a new far-red emitting fluorescent phosphoglycerolipid analogue.

We have developed a bright, photostable, and far-red emitting fluorescent phosphoglycerolipid analogue to probe diffusion characteristics of lipids in membranes. The lipid analogue consists of a saturated (C18) phosphoethanolamine and a hydrophilic far-red emitting fluorescent dye (KK114) that is tethered to the head group by a long polyethylenglycol linker. In contrast to reported far-red emit...

متن کامل

Auto-aligning stimulated emission depletion microscope using adaptive optics.

Stimulated emission depletion (STED) microscopy provides diffraction-unlimited resolution in fluorescence microscopy. Imaging at the nanoscale, however, requires precise alignment of the depletion and excitation laser foci of the STED microscope. We demonstrate here that adaptive optics can be implemented to automatically align STED and confocal images with a precision of 4.3 ± 2.3 nm.

متن کامل

STED microscopy resolves nanoparticle assemblies

We demonstrate the ability of stimulated emission depletion (STED) microscopy, a far-field fluorescence imaging technique with diffraction-unlimited resolution, to reveal the spatial order of fluorescent nanoparticles. Unlike its confocal counterpart, here STED microscopy resolves the arrangements of densely packed 40 nm beads, supramolecular aggregates in a cell membrane, and colloidal nanopar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013